Go 里的超时控制

前言

日常开发中我们大概率会遇到超时控制的场景,比如一个批量耗时任务、网络请求等;一个良好的超时控制可以有效的避免一些问题(比如 goroutine 泄露、资源不释放等)。

Timer

在 go 中实现超时控制的方法非常简单,首先第一种方案是 Time.After(d Duration)

1
2
3
4
5
func main() {
fmt.Println(time.Now())
x := <-time.After(3 * time.Second)
fmt.Println(x)
}

output:

1
2
2021-10-27 23:06:04.304596 +0800 CST m=+0.000085653
2021-10-27 23:06:07.306311 +0800 CST m=+3.001711390

time.After() 会返回一个 Channel,该 Channel 会在延时 d 段时间后写入数据。

有了这个特性就可以实现一些异步控制超时的场景:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
func main() {
ch := make(chan struct{}, 1)
go func() {
fmt.Println("do something...")
time.Sleep(4*time.Second)
ch<- struct{}{}
}()
select {
case <-ch:
fmt.Println("done")
case <-time.After(3*time.Second):
fmt.Println("timeout")
}
}

这里假设有一个 goroutine 在跑一个耗时任务,利用 select 有一个 channel 获取到数据便退出的特性,当 goroutine 没有在有限时间内完成任务时,主 goroutine 便会退出,也就达到了超时的目的。

output:

1
2
do something...
timeout

timer.After 取消,同时 Channel 发出消息,也可以关闭通道等通知方式。

注意 Channel 最好是有大小,防止阻塞 goroutine ,导致泄露。

Context

第二种方案是利用 context,go 的 context 功能强大;

利用 context.WithTimeout() 方法会返回一个具有超时功能的上下文。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
ch := make(chan string)
timeout, cancel := context.WithTimeout(context.Background(), 3*time.Second)
defer cancel()
go func() {
time.Sleep(time.Second * 4)
ch <- "done"
}()
select {
case res := <-ch:
fmt.Println(res)
case <-timeout.Done():
fmt.Println("timout", timeout.Err())
}

同样的用法,contextDone() 函数会返回一个 channel,该 channel 会在当前工作完成或者是上下文取消生效。

1
timout context deadline exceeded

通过 timeout.Err() 也能知道当前 context 关闭的原因。

goroutine 传递 context

使用 context 还有一个好处是,可以利用其天然在多个 goroutine 中传递的特性,让所有传递了该 context 的 goroutine 同时接收到取消通知,这点在多 go 中应用非常广泛。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
func main() {
total := 12
var num int32
log.Println("begin")
ctx, cancelFunc := context.WithTimeout(context.Background(), 3*time.Second)
for i := 0; i < total; i++ {
go func() {
//time.Sleep(3 * time.Second)
atomic.AddInt32(&num, 1)
if atomic.LoadInt32(&num) == 10 {
cancelFunc()
}
}()
}
for i := 0; i < 5; i++ {
go func() {
select {
case <-ctx.Done():
log.Println("ctx1 done", ctx.Err())
}
for i := 0; i < 2; i++ {
go func() {
select {
case <-ctx.Done():
log.Println("ctx2 done", ctx.Err())
}
}()
}
}()
}
time.Sleep(time.Second*5)
log.Println("end", ctx.Err())
fmt.Printf("执行完毕 %v", num)
}

在以上例子中,无论 goroutine 嵌套了多少层,都是可以在 context 取消时获得消息(当然前提是 context 得传递走)

某些特殊情况需要提前取消 context 时,也可以手动调用 cancelFunc() 函数。

Gin 中的案例

Gin 提供的 Shutdown(ctx) 函数也充分使用了 context

1
2
3
4
5
6
ctx, cancel := context.WithTimeout(context.Background(), 10*time.Second)
defer cancel()
if err := srv.Shutdown(ctx); err != nil {
log.Fatal("Server Shutdown:", err)
}
log.Println("Server exiting")

比如以上代码便是超时等待 10s 进行 Gin 的资源释放,实现的原理也和上文的例子相同。

总结

因为写 go 的时间不长,所以自己写了一个练手的项目:一个接口压力测试工具。

go-benchmark-test.md---008i3skNly1gw04urcj16g30gn0571kz.gif

其中一个很常见的需求就是压测 N 秒后退出,这里正好就应用到了相关知识点,同样是初学 go 的小伙伴可以参考。

https://github.com/crossoverJie/ptg/blob/d0781fcb5551281cf6d90a86b70130149e1525a6/duration.go#L41

crossoverJie wechat
我很有眼光!
请我吃🍗

热评文章